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ABSTRACT 

The use of slender steel sections has increased in recent years because they provide excellent 

strength to weight ratio. Yet, a major issue with slender sections is local buckling in compression 

zones. Several researchers have proposed design methods at elevated temperatures based on the 

effective width approach to calculate the capacity of the plates that compose these steel members, 

but this approach is not easily compatible with the implementation and use in Bernoulli beam 

elements. Another approach is the development of a stress based model, i.e. an “effective” 

constitutive law of steel. This approach was proposed previously by Liege University researchers 

for slender steel members exposed to high temperatures, and implemented within the framework of 

fiber type Bernoulli beam elements; however it was giving overly conservative results. This paper 

presents an improved temperature-dependent constitutive model for steel that accounts for local 

instabilities using the stress based method. The improved model is derived from refined plate 

analysis methodology and implemented in the SAFIR finite element analysis software. Validation 

shows good agreement against experimental and shell element analysis results. 
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1 INTRODUCTION 

The use of slender steel sections has increased in recent years because they provide excellent 

strength to weight ratio; this trend has also been favoured by the development of higher steel 

grades. Yet, a major issue with slender sections is local buckling that may occur in compression 

zones: in the flange under compression for elements in bending and essentially in the web for 

elements in compression. In very deep sections, shear can also trigger local buckling in the web if it 

is too slender. Local buckling can also have a significant influence on the behaviour of steel 

members in the fire situation. Detailed information regarding the local buckling of steel members 

exposed to fire is presented in [1]. 

Furthermore, past fire accidents have demonstrated local buckling failures in structural members 

with slender cross sections, like in WTC 5 [2] and Broadgate fire [3]. 

To take local instabilities into account, several design methods have been proposed by researchers 

relying on the effective width approach and based on numerical models of isolated plates [4], [5], 

[6] or analytical methods [7], but this approach is not easily compatible with the implementation 

and use in Bernoulli beam elements. Beyond the complexities associated with estimating the 

effective width (which formally depends on the stress distribution), the development of thermal 

strains in the fire situation may lead to reversal from tension to compression, and vice versa, in 
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different parts of the cross section, rendering the effective width approach particularly difficult to 

implement. Therefore another approach was proposed by Liege University researchers as the 

development of a stress based model, i.e. an “effective” constitutive law of steel [8]. This effective 

stress based approach for slender steel members exposed to high temperatures was implemented 

within the framework of fiber type Bernoulli beam finite elements. However the implemented 

model was giving overly conservative results. 

This paper presents an improved temperature-dependent constitutive model for steel that accounts 

for local instabilities using the stress based method. Based on a refined methodology and revisited 

assumptions [9], [10], [11], improved buckling reduction factor vs plate slenderness relationships 

have been derived and, based on these relationships, a novel equivalent stress-strain-temperature 

relationship has been derived. The model is intended to be used in nonlinear numerical analysis 

with fiber type beam finite elements aiming at calculation of the fire resistance of thin-walled steel 

elements. The model can be easily implemented into any finite element software which include this 

type of FE. 

2 PROPOSED MODEL 

2.1 Model development 

The effective law is derived with the same objective as the effective width: the compressive 

capacity obtained with the effective law in the full section should be equal to the capacity of the 

slender plate with the real material under local buckling. Because local buckling develops only in 

compression, the real stress-strain relationship needs to be modified only in compression and 

remains untouched in tension. It thus leads to an effective law that is non-symmetrical with respect 

to compression-tension. The tangent modulus at the origin of the law is not modified (because low 

compression stresses do not produce local instabilities), but the development of local instabilities is 

reflected by a reduction of the limit of proportionality and of the effective yield strength. The 

effective stress-strain relationship in compression depends on the slenderness, on the boundary 

conditions of the plates and on the temperature. 

The model development is based on parametric finite element analyses of isolated plates in pure 

compression. Steady-state compression tests are performed on the plates at different (constant) high 

temperatures. The analyses are performed for three sides simply supported (flange equivalent) and 

four sides simply supported plates (web equivalent), for steel grades from S235 and up to S460 and 

for temperatures from 20
°
C to 900°C. The following assumptions are adopted: imperfection 

amplitude equal to 1/200 of the plate width b [9]; sinusoidal shape of imperfections with m half-

waves (m = 1 for webs and m = 1 and 4 for flanges) [10], [11], and plate length ratio a/b equal to 1 

for web and 5 for flange [10]. The software SAFIR
®
 [12] is used for the finite element analyses. 

Typical analysis results are presented in Fig. 1 that presents the critical stress, defined as the critical 

buckling load divided by the cross section area, as a function of the slenderness ratio for different 

temperatures. 

The results can be rewritten in terms of buckling reduction factor, defined as the critical stress 

divided with the yield stress, as a function of the non-dimensional plate slenderness. The non-

dimensional plate slenderness is defined according to Eq. 1 which is taken from EN 1993-1-5 [13]: 

 (1) 

where kσ is a factor considering the applied boundary conditions defined in EN 1993-1-5 [13] and ε 

has been taken for elevated temperatures from the equation: 

 (2) 

where kΕ,θ and ky,θ are the reduction factors of Young’s modulus and yield strength respectively for 

temperature θ [14]. 
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The results are plotted in Fig. 2. As it can be seen, all analysis results are lying within a narrow 

band except for the curves at temperatures of 20 
°
C and 200

°
C. Therefore, it seems reasonable to 

adopt a single buckling reduction factor curve for the temperatures in the range of 300°C to 900°C. 

 

Fig. 1. Isolate plate (S355) analysis results (a) three sides simply supported (flange equivalent); (b) four sides simply 

supported (web equivalent) 
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Fig. 2. Buckling reduction factor vs slenderness for S355 plates (a) three sides simply supported (flange equivalent); (b) 

four sides simply supported (web equivalent) 

2.2 Proposed plate buckling model 

Eq. 3 is proposed to model the buckling curves of Fig. 2: 

 (3) 

where kθ is the buckling reduction factor at temperature θ and α, β and γ are model parameters. 

A statistical analysis based on the least square method is conducted on the results of the isolated 

plate analyses to establish the model parameters (see Fig. 3). The obtained values are presented in 

Table 1 for the parameters α, β and γ, estimated at 20°C, 200
°
C, and 300

°
C-900°C, for flange and 

web plates (six sets of parameters). It was chosen to keep the proposed model for buckling 

reduction factor as a function of plate slenderness independent of the steel grade to reduce the 

number of parameters and hence simplify its application; this approximation has only a slight 

influence on the model accuracy. 
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Table 1. Proposed model parameters 

Type of plate Temperature (
o
C) α β γ 

Flange 

20 -0.19800 1.375 -0.0368 

200 -0.10000 1.000 0.6350 

300 and higher -0.05500 1.130 0.6200 

Web 

20 -0.00066 0.446 0.9000 

200 0.04860 0.723 0.7400 

300 and higher -0.03100 1.347 0.5300 
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Fig. 3. FEA results and proposed model curve for the isolated four sides simply supported plate for grades S235, S355 

and S460 and temperatures equal or higher than 300
°
C. 

2.3 Stress-strain-temperature relationship 

A modified stress-strain-temperature relationship for steel is derived based on EN1993-1-2 [14] and 

the proposed plate buckling model. The tension part of the EN1993-1-2 material law remains 

unchanged. In compression, the proportional limit and the yield strength are reduced by the factor 

kθ (Eq. 3). The strain corresponding to the compressive yield strength is also reduced by the factor 

kθ. As a result, the proposed material law is asymmetric in tension and compression, and a different 

law is used for the flanges and for the web as different factors kθ apply (Fig. 4). 

The proposed model was implemented in the software SAFIR [12] where it is used in every point of 

integration in the beam elements. This means that, for example, the strain varies in the web of a 

section under bending and, as a consequence, also the factor kθ. 

3 VALIDATION OF PROPOSED MODEL 

3.1 Validation against fire test results 

In order to validate the proposed model, experimental results collated from two different sources 

[15], [16] were used. The fire tests No 3 and No 5 from [15] were simulated with beam finite 

elements. These tests performed in Liege University Fire Labs during FIDESC4 Research Program. 

The fire test No 3 specimen had cross section 150x5(flanges) and 450x4(web) and length 2.7 m. 

The applied load was 122.4 kN. Load eccentricity of 4 mm applied in the weak direction to avoid 

global buckling failure due to global imperfection. The amplitude of local imperfections was 2.6 

mm at the web and 4.9 mm at the flange. The fire test No 5 specimen had cross section 



Steel Structures 5 

 

 

150x5(flanges) and 360x4(web) and length 2.7 m. The applied load was 231 kN. Load eccentricity 

of 71 mm applied in the strong direction at the bottom and at the top.  The amplitude of local 

imperfections was 6.8 mm at the web and 2.3 mm at the flange. The load eccentricity of test No 5 

has not been considered for the simulation for the reason explained in Section 4. The comparison 

between experimental results and beam element analysis results is presented in Fig. 5 and shows 

good agreement with the tests. A clear improvement from the original model proposed in [8] is also 

visible.  

The simulation of the tests from [16] considered only the heated part of the column and the 

comparison between experimental results and beam element analysis results is presented in Table 2, 

showing good agreement. 

 

 

Fig. 4. Stress-strain relationship per EN1993-1-2[14] compared with the proposed modified relationship.  

Table 2. Validation against experimental results form [17] 

Cross section 

(mm) 

Ambient temperature  

yield stress (MPa) 

Temperature 

(
o
C) 

Buckling resistance 

(kN)[17] 

Buckling resistance (kN) 

Beam element  - 

proposed model 

250x250x6x8 306.4(flange), 321.9(web) 450 800 791 

316x200x6x8 306.4(flange), 321.9(web) 450 750 785 

250x220x8x8 538.1 450 1500 1378 

336x160x8x8 538.1 450 1400 1383 

250x250x6x8 306.4(flange), 321.9(web) 650 240 269 

316x200x6x8 306.4(flange), 321.9(web) 650 265 292 

250x220x8x8 538.1 650 400 426 

336x160x8x8 538.1 650 360 388 

3.2 Validation against shell element numerical analysis results 

In order to validate the proposed model against shell element analysis results, SAFIR was used to 

model columns under pure compression and beams under pure bending (laterally restrained to avoid 

lateral torsional buckling). The shell element analysis results compared with the proposed model 

beam element analysis results are presented in Fig. 6 and show good agreement. 
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Fig. 5. Model validation against fire test results a) Test No 3[16]; b) Test No 5[16] 
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Fig. 6 Beam element analysis (proposed model) vs shell element analysis results for 150x5(flange) and 380x4(web) and 

temperatures from 300 
o
C and up to 700 

o
C for S235, S355 and S460 (a) Pure compression and (b) Moment capacity. 
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4 LIMITATIONS AND FURTHER DEVELOPMENT 

The proposed model has been developed based on the assumption that a uniform displacement 

applies on the plate’s edge [9], [10], [11]. This is accurate for columns in pure compression and it is 

giving good results in pure bending because of the limited bending capacity of the web. When the 

eccentricity is large (ψ<<1 in Fig. 7) the uniform displacement assumption is conservative, as it 

limits the compressive stress capacity to the critical uniform stress. Ongoing research aims at 

incorporating this effect to enhance the proposed model by considering the ψ factor. The enhanced 

model will be validated against fire tests which are under final preparation at the fire lab of Liège 

University and which will be designed to include large eccentricities to inform the model 

development. 

 

Fig. 7. Non-uniform stress distribution and definition of the parameter ψ 

5 CONCLUSIONS 

A model based on an equivalent stress method has been proposed as an efficient way to consider 

local buckling in steel members exposed to fire. The proposed stress-strain-temperature relationship 

is asymmetric and is modified in compression only, by reducing the proportional limit, the yield 

stress and the strain at yield stress. The reduction of these parameters depends on the plate’s 

boundary conditions, slenderness and temperature. 

The proposed stress-strain-temperature relationship has been implemented in the software SAFIR 

and validated against experimental and shell element analysis results, showing good agreement over 

a range of profile dimensions, temperatures and steel grades. 

The proposed model is suitable for use with fibre type beam finite elements. Such a model can save 

enormous computational time compared with traditional shell models for thin-plate members. For 

example, a typical column modelled with the equivalent stress method and beam FE may have 300 

degrees of freedom and a computational time shorter than 72 seconds for 350 time steps (with use 

of a Core i5 computer), whereas the same column modelled with shell elements would have 47750 

degrees of freedom and a computational time of 847 seconds for the same time steps. It must be 

noted that the computational time is increased enormously when the analysis considers a larger 

number of structural elements. 

The model is still giving conservative results for large compressive load eccentricities. For this 

reason an enhanced model is under development. Further extension of the proposed equivalent 

stress method is its modification for high and very high strength steel grades. 
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